A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation
نویسندگان
چکیده
This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy.
منابع مشابه
Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics
We study the deformation and haptic feedback of soft tissue in virtual surgery based on a liver model by using a force feedback device named PHANTOM OMNI developed by SensAble Company in USA. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue and implementing force feedback, it is still a challenging problem. This paper introduces a ...
متن کاملSoft Tissue Modeling Using ANFIS for Training Diagnosis of Breast Cancer in Haptic Simulator
Soft tissue modeling for the creation of a haptic simulator for training medical skills has been the focus of many attempts up to now. In soft tissue modeling the most important parameter considered is its being real-time, as well as its accuracy and sensitivity. In this paper, ANFIS approach is used to present a nonlinear model for soft tissue. The required data for training the neuro-fuzzy mo...
متن کاملA hybrid deformable model for real-time surgical simulation
Modeling organ deformation in real remains a challenge in virtual minimally invasive (MIS) surgery simulation. In this paper, we propose a new hybrid deformable model to simulate deformable organs in the real-time surgical training system. Our hybrid model uses boundary element method (BEM) to compute global deformation based on a coarse surface mesh and uses a mass-spring model to simulate the...
متن کاملVirtual Environments for Medical Training: Graphic and Haptic Simulation of Tool-Tissue Interactions
For more than 2,500 years, surgical teaching has been based on the so called "see one, do one, teach one" paradigm, in which the surgical trainee learns by operating on patients under close supervision of peers and superiors. However, higher demands on the quality of patient care and rising malpractice costs have made it increasingly risky to train on patients. Minimally invasive surgery, in pa...
متن کاملModeling biologic soft tissues for haptic feedback with an hybrid multiresolution method.
The simulation of realistic surgical procedures requires specialized optimized algorithms for the models of organs and tissues, which should comply both with accuracy of results and run-time computation. This paper provides a numerical method for implementing deformation of soft tissues for haptic feedback that makes use of a hybrid pre-computation scheme.
متن کامل